Функции

1. **(1 балл).** На рисунке изображён график функции f(x) = kx + b. Найдите значение функции в точке x = 52

Решение:

Функция проходит через точку: (-2,2), следовательно 2 = -2k + b.

Функция проходит через точку (2, -1), следовательно, -1=2k+b.

Решая систему уравнений

Таким образом, уравнение прямой имеет вид $f(x) = -\frac{3}{4}k + \frac{1}{2}b$..


Подставляя значение 52, получаем f(52) = -38,5.

Ответ: -38,5.

Критерии проверки:

Баллы	Правильность (ошибочность) решения		
1	Толное верное решение.		
0,5	Верная последовательность действий, но имеется арифметическая ошибка ИЛИ		
	Указан только верный ответ без комментариев.		
0	Решение неверное, продвижениятсутствуют или решение отсутствует.		

2. **(2 балла).** На рисунке изображены графики функций $f(x) = a\sqrt{x}$ и g(x) = kx + b, которые пересекаются в точке А. Найдите ординату точки А.

-5

Решение:

Функция f(x) проходит через точку: (9,2), следовательно, $2 = a\sqrt{9}$, $a = \frac{2}{3}$.

Абсцисса точки пересечения равна 4.

Значит,
$$f(x) = 2 * \frac{2}{3}$$
.
Ответ: $\frac{4}{3}$.

Критерии проверки:

Баллы	Правильность (ошибочность) решения		
2	Полное верное решение.		
1,5	Решение верное, но из-за некоторых неточностей правильный ответ не получен (возможна арифметическая ошибка).		
1	Найдена верно абсцисса точки пересечения, ордината не найдена.		
0,5	0,5 Найдены верно уравнения функций. Не найдены ни абсцисса, ни ордината точки пересечения.		
0	Решение неверное, продвижения отсутствуют или решение отсутствует.		

3. **(2 балла).** На рисунке изображены графики функций $f(x) = \frac{3x+a}{x+c}$ и g(x) = kx+b, которые пересекаются в точке А. Найдите положительную абсциссу точки А.

Решение:

Функция f(x) проходит через точки: (4,2) и (0,-2), следовательно, $2=\frac{12+a}{4+c}, -2=\frac{a}{c}$. Откуда находим:

$$a = -2$$
, $c = -1$

Функция g(x) проходит через точки (-1,5) и (0,3), следовательно,

$$\begin{cases} 5 = -k + 3, \\ 3 = b. \end{cases}$$

Откуда находим: b = 3, k = -2,

Абсциссу точки пересечения найдём из уравнения:

$$-2x + 3 = \frac{3x - 2}{x - 1}.$$

$$-2x^2-2x+5=0$$
 . Решая квадратное уравнение, находим $x_1=\frac{1+\sqrt{11}}{-2}$, $x_2=\frac{1-\sqrt{11}}{-2}$.

$$x_1 < 0, x_2 > 0$$

Значит
$$x = \frac{1-\sqrt{11}}{-2}$$
.

Otbet:
$$\frac{1-\sqrt{11}}{-2}$$
.

Критерии проверки:

Баллы	Правильность (ошибочность) решения	
Биллы	привильность (ошиоочность) решения	
2	Полное верное решение.	
1,5	Решение верное, но из-за некоторых неточностей правильный ответ не получен (возможна арифметическая ошибка).	
1	Найдены верно абсциссы точек пересечения, но в ответе указана отрицательная абсцисса или сразу две абсциссы.	
0,5	Найдены верно уравнения функций. Не найдены абсциссы точек пересечения.	
0	Решение неверное, продвижения отсутствуют или решение отсутствует.	

4. (2 балла). Найдите ординату точки минимума функции

$$f(x) = \sqrt{x^2 - 4x + 13}.$$

Решение:

Квадратный трехчлен $x^2-4x+13\,$ с положительным старшим коэффициентом достигает минимума в точке $x_{min}=\frac{-b}{2a}=\frac{4}{2}=2\,$. Поскольку функция $y=\sqrt{x}$ возрастающая, а заданная функция определена при найденном значении переменной, она достигает минимума в той же точке, в которой достигает минимума подкоренное выражение.

Найдём ординату:
$$f(x) = (2^2 - 4 * 2 + 13)^{\frac{1}{2}} = 3$$
.

Ответ: 3.

Критерии проверки:

Баллы	Правильность (ошибочность) решения	
2	Полное верное решение	

1	Решение верное, но из-за некоторых неточностей правильный ответ не получен
	(возможна арифметическая ошибка).
0,5	Найдена верно абсцисса, но не найдена ордината.
0	Решение неверное, продвижения отсутствуют или решение отсутствует.

5. (2 балла). Найдите абсциссу точки максимума функции

$$f(x) = 7^{-x^2 + 5x - 8}$$

Решение:

Поскольку функция 7^x возрастающая, заданная функция достигает максимума в той же точке, в которой достигает максимума выражение $-x^2+5x-8$. Квадратный трехчлен с отрицательным старшим коэффициентом достигает максимума в точке $x_{max}=\frac{-b}{2a}$. В нашем случае — в точке 2,5.

Ответ: 2,5.

Критерии проверки:

Баллы	Правильность (ошибочность) решения	
2	Полное верное решение	
1	Решение верное, но из-за некоторых неточностей правильный ответ не получен (возможна арифметическая ошибка).	
0,5	Найдена верно способ решения, приведены верные рассуждения, но не найдена абсцисса.	
0	Решение неверное, продвижения отсутствуют или решение отсутствует.	

6. **(3 балла)** Найти наименьшее значение функции $f(x) = (x^2 - 8x + 8)e^{3-x}$ на отрезке [0,10].

Решение:

Найдём производную функции: $f(x) = (-x^2 + 10x - 16)e^{3-x}$.

Найдём нули производной: $f(x) = 0 \iff x = 2, x = 8$.

Поведение функции:

Знак	-	2	+	8	-
производной					
Поведение	убывает	min	возрастает	max	убывает
функции					

$$f(x_{min}) = (2^2 - 8 * 2 + 8)e^{3-2} = -4e$$

$$f(10) = 28e^{-7}$$

Следовательно, наименьшее значение функции равно -4е.

Ответ: -4е.

Критерии проверки:

Баллы	Правильность (ошибочность) решения	
3	Полное верное решение	
2	Решение верное, но из-за некоторых неточностей правильный ответ не получен (возможна арифметическая ошибка).	
1	Найдена верно способ решения, приведены верные рассуждения, но не найдена абсцисса.	
0	Решение неверное, продвижения отсутствуют или решение отсутствует.	

Уравнения и неравенства

1. (1 балл). Решить неравенство $x^2 - 4x + 4 > 0$.

Решение: $(x-2)^2 > 0$. Заметим, что левая часть неравенства принимает только неотрицательные значения. Поскольку знак неравенства строгий, то получаем $x \neq 2$. Возможно решение методом интервалов, либо графически, исследованием квадратного трехчлена.

Otbet: $x \neq 2$.

Критерии проверки:

Баллы	Правильность (ошибочность) решения		
1	Полное верное решение.		
0,5	Верная последовательность действий, но имеется арифметическая ошибка ИЛИ Указан только верный ответ без комментариев.		
0	Решение неверное, продвижения отсутствуют или решение отсутствует		

2. (1 балл). Решите уравнение $216^{-x+4} = \frac{1}{6^x}$.

Решение: $6^{3(-x+4)} = 6^{-x}$; $6^{-3x+12} = 6^{-x}$; -3x+12 = -x; x = 6.

Otbet: x = 6.

Критерии проверки:

Баллы	Правильность (ошибочность) решения	
1	Полное верное решение.	
0,5	Верная последовательность действий, но имеется арифметическая ошибка ИЛИ Указан только верный ответ без комментариев.	
0	Решение неверное, продвижения отсутствуют или решение отсутствует.	

3. (2 балла). Решите уравнение $\sqrt{6-5x} = -x$.

Решение: При условии на правую часть: $-x \ge 0 \Rightarrow x \le 0$, возведем обе части уравнения в квадрат. Получим квадратное уравнение $x^2 + 5x - 6 = 0$. Решив которое, получим корни x = -6; x = 1. Один из корней не удовлетворяет условию $x \le 0$, поэтому в ответ записываем только корень x = -6.

Otbet: x = -6

Баллы	Правильность (ошибочность) решения
2	Полное верное решение Получен правильный ответ.
1,5	Верно найдено ОДЗ, выполнено возведение в квадрат, при решении
	квадратного уравнения допущена арифметическая ошибка. С учётом этой
	ошибки получен неверный ответ
1	Верно выполнено возведение в квадрат. Решено квадратное уравнение. Не
	выполнен отбор корней
0,5	Верно найдена ОДЗ.
0	Ни одно из выше перечисленных действий не выполнено.

4. (2 балла). Решить неравенство $x^2 \le \frac{1}{x^2}$.

Решение: ОДЗ $x \neq 0$. После приведения к общему знаменателю и разложения на

множители
$$\frac{(x-1)(x+1)(x^2+1)}{x^2} \le 0$$
. Решая методом интервалов получим [-1;0) U

(0;1].

Ответ: [-1;0) U (0;1].

Баллы	Правильность (ошибочность) решения

2	Полное верное решение Получен правильный ответ.
1,5	Верная последовательность действий. Верно выполнено приведение к
	общему знаменателю, разложение на множители. Верно расставлены знаки в
	методе интервалов. Допущена ошибка в расстановке скобок в окончательном
	ответе.
1	Верно выписана дробь после приведения к общему знаменателю. При
	расстановке знаков допущена ошибка. Один из двух интервалов в ответе
	найден.
0,5	Из-за неверно расставленных знаков в методе интервалов получен неверный
	ответ.
0	Ни одно из вышеперечисленных действий не выполнено.

5. (3 балла). Решить неравенство $\frac{9^{x+0.5}+1}{3-3^{2x}} \le 3^{2x}+1$.

Решение: ОДЗ $x \neq 0.5$.

- 1) Приводим к общему знаменателю, представив $9^{x+0.5} = 3 \cdot 3^{2x}$. Получим $\frac{3 \cdot 3^{2x} + 1 3 \cdot 3^{2x} + 3^{4x} + 3^{2x}}{3 3^{2x}} \le 0$. После приведения подобных $\frac{3^{4x} + 3^{2x} 2}{3 3^{2x}} \le 0$.
- 2) Замена $t=3^{2x}$, t>0. Решаем неравенство $\frac{t^2+t-2}{3-t} \le 0$ или $\frac{(t+2)(t-1)}{3-t} \le 0$. Получим промежутки $-2 \le t \le 1$ и t>3.
- **3)** Возвращаемся к замене с учетом того, что t>0. Имеем $3^{2x} \le 1$ и $3^{2x} > 3$. Откуда получаем ответ $x \le 0$ и x > 0,5.

Ответ: $x \le 0$ и x > 0,5.

Баллы	Правильность (ошибочность) решения
3	Полное верное решение. Получен правильный ответ
2	Верно выполнены шаги 1) и 2). При решении шага 3) допущена арифметическая ошибка, повлиявшая на ответ ИЛИ неверно расставлены знаки неравенств (скобок) в ответе.
1	Верно выполнен шаг 1.
0	Ни одно из вышеперечисленных действий не выполнено.

6. (**3 балла**). Решите уравнение $x^3 - 2x^2 - 9 = 0$

Решение: 1) Найдем корень, удовлетворяющий уравнению x=3.

- 2) Разделим уголком выражение в левой части на x-3. Получим уравнение $(x-3)(x^2+x+3)=0$.
- 3) Квадратное уравнение корней не имеет, D<0. Единственный корень x=3.

Ответ: x=3.

3	Обоснованно получен верный ответ.
2	Выполнено разложение выражения на множители. На шаге 3 допущена
	вычислительная ошибка.
1	Подбором или любым другим способом найден корень х=3.
0	Решение не соответствует ни одному из критериев, перечисленных выше

МАТЕМАТИЧЕСКИЙ МАРАФОН СТАРШЕКЛАССНИКОВ

19 декабря 2021 г.

Теория вероятностей

1. (1 балл) При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.

Решение: $P(A) = \frac{18}{2982+18} = \frac{18}{3000} = \frac{6}{1000} = 0,006.$

Ответ: 0,006

КРИТЕРИИ ПРОВЕРКИ

1 балл	Обоснованно получен правильный ответ.
0,5 баллов	Допущена арифметическая ошибка или описка.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.

2. (1 балл) В соревнованиях по толканию ядра участвуют 3 спортсмена из Македонии, 8 спортсменов из Сербии, 3 спортсмена из Хорватии и 6 — из Словении. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Сербии.

Решение: $P(A) = \frac{8}{3+8+3+6} = \frac{8}{20} = \frac{4}{10} = 0,4.$

Ответ: 0,4

КРИТЕРИИ ПРОВЕРКИ

1 балла	Обоснованно получен правильный ответ.
0,5 балл	Допущена арифметическая ошибка или описка.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.

3. (2 балл) На фабрике керамической посуды 30% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до тысячных.

Решение: Пусть завод произвел n тарелок. В продажу поступят все качественные тарелки и 30% не выявленных дефектных тарелок: $0.7n + 0.3 \cdot 0.3n = 0.79n$ тарелок. Поскольку качественных из них 0.7n вероятность купить качественную тарелку равна $\frac{0.7n}{0.79n} = \frac{70}{79} = 0.8860$...

Округляя результат до тысячных, получаем 0,886.

Ответ: 0,886

КРИТЕРИИ ПРОВЕРКИ

2 балл	Обоснованно получен правильный ответ.
	Допущена арифметическая ошибка или описка, в силу чего ответ
1 балла	может отличаться от верного. Или верно найдено количество тарелок с
	дефектом, поступивших в продажу, но решение не закончено.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.

4. (2 балл) Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание. Вероятность того, что абитуриент 3. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5. Найдите вероятность того, что 3. сможет поступить хотя бы на одну из двух упомянутых специальностей. Решение: В силу независимости событий, вероятность успешно сдать экзамены на лингвистику: 0,6 ⋅ 0,8 ⋅ 0,7 = 0,336;

вероятность успешно сдать экзамены на коммерцию: $0.6 \cdot 0.8 \cdot 0.5 = 0.24$;

вероятность успешно сдать экзамены и на «Лингвистику», и на «Коммерцию»: $0.6 \cdot 0.8 \cdot 0.7 \cdot 0.5 = 0.168$.

Успешная сдача экзаменов на «Лингвистику» и на «Коммерцию» — события совместные, поэтому вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Тем самым, поступить хотя бы на одну из этих специальностей абитуриент может с вероятностью 0.336 + 0.24 - 0.168 = 0.408.

Ответ: 0,408

КРИТЕРИИ ПРОВЕРКИ

2 балла	Обоснованно получен правильный ответ.
1 баллов	Допущена арифметическая ошибка или описка, в силу чего ответ
	может отличаться от верного. Верно найдена вероятность событий
1 баллов	«поступил на специальность лингвистика» и «поступил на
	специальность коммерция», но решение не закончено.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.

5. (3 балл) В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Pешение: Рассмотрим события: A = кофе закончится в первом автомате; B = кофе закончится во втором автомате.

Тогда $A \cdot B$ = кофе закончится в обоих автоматах; A + B = кофе закончится хотя бы в одном автомате.

По условию P(A) = P(B) = 0.35; $P(A \cdot B) = 0.16$.

События А и В совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

$$P(A + B) = P(A) + P(B) - P(A \cdot B) = 0.35 + 0.35 - 0.16 = 0.54$$
.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1-0.54=0.46.

Ответ: 0,46

КРИТЕРИИ ПРОВЕРКИ

3 балла	Обоснованно получен правильный ответ.
2 баллов	Ход решения верный. Но допущена арифметическая ошибка, в силу
2 Galilion	чего ответ может отличаться от верного.
1 баллов	Ход решения в целом верный, но не учтено, что события совместные.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.

6. (3 балл) При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание? *Решение*: Пусть событие A — пациент болен, событие B — тест выявляет наличие заболевания. Тогда P(A) = x — вероятность того, что пациент болен. Если заболевание действительно есть, то тест подтверждает его в 86% случаев, значит, вероятность того, что пациент болен и тест подтверждает это, равна $P(AB) = x \cdot 0.86$. Если заболевания нет, то тест выявляет отсутствие заболевания в 94% случаев, значит, вероятность того, что пациент не болен, а тест дал положительный результат, равна $(1-x) \cdot (1-0.94)$. Тогда вероятность того, что тест окажется положительным, равна $P(B) = x \cdot 0.86 + (1-x) \cdot (1-0.94) = 0.1$. Находим x: $x \cdot 0.86 + (1-x) \cdot 0.06 = 0.1 \Rightarrow x \cdot 0.86 + 0.06 - 0.06x = 0.1 \Rightarrow x \cdot 0.8 = 0.04 \Rightarrow x = 0.05$.

Тогда вероятность того, что тест оказался положительным у пациента, который действительно имеет заболевание, равна $P(A/B) = \frac{P(AB)}{P(B)} = \frac{0,05 \cdot 0,86}{0,1} = 0,43$.

Ответ: 0,43

КРИТЕРИИ ПРОВЕРКИ

3 балла	Обоснованно получен правильный ответ.
2 баллов	Ход решения верный. Но допущена арифметическая ошибка, в силу чего ответ может отличаться от верного.
1 баллов	Верно найдена вероятность события «пациент болен и тест подтверждает это». Но решение не завершено.
0 баллов	Решение не соответствует ни одному из перечисленных критериев.